近日,中国科学院上海光学精密机械研究所(以下简称“上海光机所”)与上海理工大学等科研单位合作,在超大容量三维超分辨光存储研究中取得突破性进展。研究团队利用国际首创的双光束调控聚集诱导发光超分辨光存储技术,实验上首次在信息写入和读出均突破了衍射极限的限制,实现了点尺寸为54nm、道间距为70nm的超分辨数据存储,并完成了100层的多层记录,单盘等效容量达Pb量级,对于我国在信息存储领域突破“卡脖子”障碍、实现数字经济的可持续发展具有重大意义。相关研究成果于2024年2月22日发表于《自然》(Nature)杂志。
光存储技术具有绿色节能、安全可靠、寿命长达50~100年的独特优势,非常适合长期低成本存储海量数据,然而受到衍射极限的限制,传统商用光盘的最大容量仅在百GB量级。在信息量日益增长的大数据时代,突破衍射极限、缩小信息点尺寸、提高单盘存储容量长久以来一直都是光存储领域的不懈追求。
1994年德国科学家Stefan W. Hell教授提出受激辐射损耗显微技术,首次证明了光学衍射极限能够被打破,并在2014年获得诺贝尔化学奖,经过20多年的发展,在显微成像、激光纳米光刻等多个领域实现了光学超分辨成果,信息的超分辨写入已经得到了解决。然而传统染料在聚集状态下极易发生荧光猝灭,造成信息的丢失,在纳米尺度下还存在被背景噪声湮没的难题,导致超分辨的信息难以读出,通常依赖电镜扫描的读出方式,限制了超分辨技术在光存储领域中的应用。因此,发展可同步实现超分辨写、超分辨读、三维存储及长寿命介质是10多年来光存储研究领域亟待解决的难题。